CÁNCER
¿que es?
Cáncer es el nombre que se da a un conjunto de enfermedades
relacionadas. En todos los tipos de cáncer, algunas de las células del
cuerpo empiezan a dividirse sin detenerse y se diseminan a los tejidos
del derredor.
El cáncer puede empezar casi en cualquier lugar del cuerpo humano, el
cual está formado de trillones de células. Normalmente, las células
humanas crecen y se dividen para formar nuevas células a medida que el
cuerpo las necesita. Cuando las células normales envejecen o se dañan,
mueren, y células nuevas las remplazan.
A
medida que las células se hacen más y más anormales, las células viejas o
dañadas sobreviven cuando deberían morir, y células nuevas se forman
cuando no son necesarias. Estas células adicionales pueden dividirse sin
interrupción y pueden formar masas que se llaman tumores.
Muchos cánceres forman tumores sólidos, los cuales son masas de
tejido. Los cánceres de la sangre, como las leucemias, en general no
forman tumores sólidos.
viernes, 28 de abril de 2017
jueves, 27 de abril de 2017
ISAAC NEWTON
Biografía:
Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos y filosóficos de mediados del siglo XVII.
Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en física y matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo XX; por entonces había ya obtenido una cátedra en su universidad (1669). Protagonista fundamental de la Revolución científica de los siglos XVI y XVII y padre de la mecánica clásica, Newton siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso. Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las matemáticas; también formuló el teorema del binomio (binomio de Newton).
Las aportaciones esenciales de Isaac Newton se produjeron en el terreno de la física. Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703). También trabajó en otras áreas, como la termodinámica y la acústica.
Pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento, hoy llamadas
La mayor parte de estas ideas circulaban ya en el ambiente científico de la época; pero Newton les dio el carácter sistemático de una teoría general, capaz de sustentar la concepción científica del Universo durante más de dos siglos. Si todavía en nuestros días resulta admirable la elegancia y sencillez de la mecánica newtoniana, puede imaginarse el deslumbramiento que produjo en sus contemporáneos aquella clarificación de un vasto conjunto de fenómenos; así lo expresó un compatriota suyo, el poeta Alexander Pope: "La Naturaleza y sus leyes yacían ocultas en la noche, pero dijo Dios: ¡Hágase la luz!, y nació Isaac Newton".
Hasta que terminó su trabajo científico propiamente dicho (hacia 1693), Newton se dedicó a aplicar sus principios generales a la resolución de problemas concretos, como la predicción de la posición exacta de los cuerpos celestes, convirtiéndose en el mayor astrónomo del siglo. Sobre todos estos temas mantuvo agrios debates con otros científicos (como Edmund Halley, Robert Hooke, Leibniz o John Flamsteed), en los que encajó mal las críticas y se mostró extremadamente celoso de sus posiciones.
Como profesor de Cambridge, Newton se enfrentó a los abusos de Jacobo II contra la universidad, lo cual le llevó a aceptar un escaño en el Parlamento surgido de la «Gloriosa Revolución» (1689-90). En 1696 el régimen le nombró director de la Casa de la Moneda, buscando en él un administrador inteligente y honrado para poner coto a las falsificaciones. Volvería a representar a su universidad en el Parlamento en 1701. En 1703 fue nombrado presidente de la Royal Society de Londres. Y en 1705 culminó la ascensión de su prestigio al ser nombrado caballero
sus leyes :
Ley de la inercia :
La primera ley del movimiento rebate la
idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento
si se le aplica una fuerza. Newton expone que :
Todo cuerpo persevera en su estado de reposo o movimiento
uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por
fuerzas impresas sobre él.
Esta ley postula, por tanto, que un
cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o
en movimiento rectilíneo uniforme, a menos que se aplique una fuerza
neta sobre él. Newton
toma en cuenta, así, el que los cuerpos en movimiento están sometidos
constantemente a fuerzas de roce o fricción, que los frena de forma
progresiva, algo novedo Ley de acción y reacción :so respecto de concepciones anteriores que
entendían que el movimiento o la detención de un cuerpo se debía
exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca
entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma, un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se ent iende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma, un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se ent iende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
Ley de fuerza :
La segunda ley del movimiento de Newton dice que
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movi Ley de acción y reacción :miento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
Donde
es la cantidad de movimiento y la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñas velocidades, puede reescribirse más sencillamente como:
Ley de acción y reacción :
Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en direcciones opuestas.
La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en dirección.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley.
Junto con las anteriores, permite enunciar los principios de conservación del momento lineal y del momento angular.
Suscribirse a:
Entradas (Atom)